ESO: EXECUTIVE SUMMARY

ES1: <u>BACKGROUND</u>

The last decade has seen a surge in the expansion and rehabilitation of our road network. This has caused the emergence of greater transportation by road, the mass movement of goods and supplies across the country. The vehicles now being used to transport these goods, have been improved from the standard 18-wheeler trucks used in design of our roadways and the bridges by extension. As a result, some of our bridges have been overloaded beyond their designated allowable capacity, creating continuous stresses on the bridge structures.

With this, the peak traffic flows are not intense in these areas; however the frequency with which vehicles are impacting on this network is increased. There are 738 bridges on the NWA road network with an average age of 50 years. Most of the remainder of which were built prior to emancipation are still functional; but this condition is not desirable. However due to the scarcity of funds, they have been neglected, having less than design capacity.

ES2: PROJECT OVERVIEW

This project comprises the construction and replacement of approximately 43 Bridges Island wide. The bridges are of four (4) different forms namely, Compact 200 Bridges, Delta Bridges, Short Span Beam Bridges and Plate Girder Bridges, with spans that range from 12.191m to 39.622m, 48.766m, and 9.144m to 10.667m and 9.144m to 182.88m respectively.

The bridges superstructure will be principally of a steel deck supplied with a Urethane and Bauxite surfacing however, there will be some plate girders with a reinforced concrete composite deck. All bridges structure will be supported on reinforced concrete abutment and center piers where necessary, with traditional mat or pile foundations.

ES3: <u>PROJECT ENVIRONMENT</u>

Most of the bridges are located in the rural areas where agriculture is the main economic activity. At most of the sites the ecology has been modified by farming or commercial practices.

NAME OF BRIDGE	PARISH	EXISTING STRUCTURE	PROPOSED
			STRUCTURE
Barham	Westmoreland	Steel Girder	2- Lane compact 200
Bushy Park #3	St. Catherine	Multi-span single lane pre- stressed concrete	2 Lane Delta

NAME OF BRIDGE	PARISH	EXISTING STRUCTURE	PROPOSED
			STRUCTURE
Dry River Bridge	Portland	Steel Truss	Single Lane compact 200
Dundee Bridge	Hanover	Timber Bailey Bridge	Single Lane Compact 200
Eden River	St. Mary	Double Span	2- Lane Compact 200
Enfield	St. Mary	Steel Truss	Single Lane Compact 200
Fontabelle #2	St. Mary	Single Span Concrete Girder	2- Lane Plate Girder
Grosmond - Concrete	St. Elizabeth	Steel Beam (Concrete)	Short Span Beam
Guanaboa Vale	St. Catherine	Through Girder	2- Lane Plate Girder
Harbour Head	St. Thomas	Single Lane Through Girder	Single Lane Compact 200
Hog Hole	St. Catherine	Fording	Single lane Compact 200
Jacob	Portland	Two Span Steel truss	Single Lane Compact 200
John's Hall #2	St. James	Steel Bean (Concrete)	Short Span Beam
John's Hall (New#1)	St. James	No Structure	Short Span Beam
John's Hall (New#2)	St. James	No Structure	Short Span Beam
Kings Valley Bridge	Westmoreland	Timber Bailey Bridge	2- Lane Plate Girder
Latium Bridge	St. James	Steel Beam Concrete	Single Lane Compact 200
Leith Hall	St. Thomas	Single Span Concrete	2- lane Quick
Lime Bush	Portland	Single Span Steel Truss	Single lane Compact 200
Maggart Bridge	St. Mary	Single Land Solid Slab	2- Lane Plate Girder
May River	St. Mary	Steel Beam in concrete	Short Span Beam
Merrivale Gully	St. Andrew		3- Lane Plate
Nightingale (truss)	St. Catherine	Single Span Steel Truss	2- Lane Compact 200
Pedro River Bridge	Clarendon	Through Girder	2- Lane Compact 200
Red Hill's Over Pass	St. Andrew	Single Span Steel Girder	3- Lane Plate Girder
Rosa Bridge	Clarendon	Single Span Steel Girder	Short Span Bean
Salt Gully Bridge	St. Catherine	No Structure	Single Lane Compact 200
Sandy Gully Cassia Park	St. Andrew	Fording	2- Lane Plate Girder
Sandy Gully (Queensborough)	St. Andrew	Fording	2- Lane Plate Girder
Shooting River	St. Thomas	Single Lane Bailey	Single Lane Compact 200
Silent Hill Bridge	Clarendon	No Structure	Single Lane Compact 200
Spring Field	Clarendon	Single Span Through Girder	2 – Lane compact 200
Spring Vale	St. Catherine	Timber Deck Bailey	2-Lane Compact 200
Stubbs Bridge	St. Catherine	Single Span steel Truss	2-Lane Plate Girder
Temple Hall (Boswell Heights)	St. Andrew	Fording	Single Lane Compact

NAME OF BRIDGE	PARISH	EXISTING STRUCTURE	PROPOSED
			STRUCTURE
Vanity Fair	St. Catherine	2-Lane Steel Truss	2-Lane Plate Girder
Wakefield	St. Catherine	Timber Bailey Bridge	2-Lane Compact 200
Wain Spring Bridge	Portland	Single Lane Steel Girder	Short Span Beam
Ward River #1	St. Thomas	Single Span Steel Girder	Short Span Beam
Yallahs River Bridge	St. Thomas	Fording	2-Lane Plate Girder
Unknown #3	St. Mary	Single Concrete Slab	Short Span Beam
Unknown #4	St. Mary	Single Span Beam	Short Span Beam

ES4: LEGISLATIVE AND REGULATORY FRAMEWORK:

The Natural Resources Conservation Act was passed in the Jamaican Parliament in 1991and provided the basis for the establishment of the Natural Resources Conservation Authority (NRCA) with primary responsibility for ensuring sustainable development in Jamaica through the protection and management of Jamaica's natural resources and control of pollution. Sections 9 and 10 of the NRCA Act stipulate that an Environmental Impact Assessment (EIA) is required for new projects and existing projects undergoing expansion.

The Environmental Permit and License System (P&L), introduced in 1997, is a mechanism to ensure that all developments in Jamaica meet required standards in order to minimize negative environmental impacts. The P&L System is administered by NEPA, through the Applications Section (formerly the Permit and License Secretariat). Permits are required by persons undertaking new development which fall within a prescribed category. Under the NRCA Act of 1991, the NRCA is authorized to issue, suspend and revoke permits and licences if facilities are not in compliance with the environmental standards and conditions of approval stipulated. An applicant for a Permit or License must complete an application form as well as a Project Information Form (PIF) for submission to the NRCA/NEPA.

ES5: PROJECT IMPACTS AND MITIGATION

Pre-Construction Period:

No widening or realignment of the carriage way outside of the existing right-of-way (ROW) will be required on most of the sites; Replacement bridges will be constructed in most instances on the existing alignment and no realignment of approaches will be necessary; Remedial works related to earthworks will adopt designs which do not involve new construction outside the existing ROW.

Construction Period:

The impacts associated with most of the areas where work is to take place are not in anyway adverse, because the activities will be confined to a narrow construction zone. However, control measures in the form of suitable environmental protection clauses will be included in the contracts. The programme will not involve construction activities in areas which are designated environmentally sensitive. No major earthworks will be carried out in any of these areas and the potential for erosion will be significantly reduced.

Operational Period:

The key impact anticipated during the operational will generally be beneficial, these will include; improvement to local communities, access to markets, reduction in goods and passenger transport costs and improvement in drainage conditions. While there may be increases in traffic levels, the increase will unlikely to be high enough to have any negative impact on the communities.

Environmental Monitoring and Management:

Environmental management requirements during construction will be documented in the Environmental Management Plan (EMP). The Environmental Management Plan (EMP) is a method of ensuring that the measures identified and commitments made in the environmental assessment process are delivered in the construction and operational phases of the project. The EMIP is a document that will be produced by the contractor, in accordance with EMP guidelines. It will detail how the contractor will implement and manage environmental aspects of the project. The contractor will outline mitigation measures that are required to be put in place for the duration of the Contract.

ES5: CONCLUSION:

The Mabey Johnson Priority Bridges Programme is designed to rehabilitate at least 44 badly deteriorating bridges on the NWA national network. The work will involve primarily existing bridges structures or where fording exists, the work will take place in the same locations. Having assessed the site conditions, there is no location where primary vegetation exists and the proposed works will not impact negatively on protected resources. Although some potential negative impacts have been identified for the project, the majority is short-term and relates mainly to site preparation and construction. Most of the negative impacts that have been identified can be successfully mitigated, given the guidelines provided in the appendices.

There are several positive impacts associated with the project. These include the improvement of access to remote, communities; improved efficiency in the movement of goods and services; support of new development and employment opportunities; improvement in the safety of the motoring public especially where the conditions on a number of the bridges have been deterioration over the past years.

Implementation, monitoring and enforcement of the mitigation measures that are recommended in the report and improved communication to the wider community, will ensure successful execution of this bridge program with minimum negative impact on the environment.